Scientists have traditionally studied recreation in nature by conducting surveys at entrances to major attractions such as national parks. This method is expensive and provides limited spatial and temporal coverage. A new source of information is available from online social media websites such as flickr. Here, we test whether this source of big data can be used to approximate visitation rates. We use the locations of photographs in flickr to estimate visitation rates at 836 recreational sites around the world, and use information from the profiles of the photographers to derive travelers’ origins. We compare these estimates to empirical data at each site and conclude that the crowd-sourced information can indeed serve as a reliable proxy for empirical visitation rates. This new approach offers opportunities to understand which elements of nature attract people to locations around the globe, and whether changes in ecosystems will alter visitation rates.